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Base-catayeed hydrogen exchange in carboyclic aromatic systems is 

understood in great detail (1). Proton exchange in five-membered heter- 

acyclic rings, particularly those forming ylidic intermediates, is of con- 

eiderable current interest (2). Deprotonation of six-membered hetero- 

cyclic ring systems such as pyridines, by contrast, presently is character- 

ized by a paucity of data and a multiplicity of proposed mechanisms (3). 

We wish to report conditions to induce base-catalyzed H-D exchange at 

several positions in 3,5-dichloropyridine N-oxide (I) and in 3-chloropyridine 

N-oxide (II) and to give relative rates of deprotonation for positions within 

each of these substrates. This work represents the most extensive study 

to date of proton exchange in a pyridine N-oxide. 

Treatment of I with a 0.1 N solution of NaOD in D20 at 78for 1 l/2 hours 

followed by isolation gave a product (70%) which possessed an n. m. r. spec- 

trum essentially identical with that of I. Pyridine I exhibits an A2B spectrum 

with a doublet at 1.53f and a triplet at 2.217’ in methanol (4) (area ratio is 

2: 1). That this product indeed contained deuterium followed from a quanti- 

tative comparison of integrated areas of a known mixture of product and 
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t_-C4H9OH reference standard in methanol. Exchange occurred at three 

positions of I; > 97 atom % deuterium was introduced. To differentiate 

between the reactivity of 2, 6-H and 4-H of I, a solution of 3,5-dichloro- 

pyridine N-oxide-d3 (from the previous experiment) in 0. 01 _N CH30Na in 

CH30H at 22Owas examined after two hours. The increase in the 2,6-H/ 

4-H area ratio to 13/l indicated exchange had occured more rapidly at the 

2,6-positions. The relative order of deprotonation of I is established and 

is summarized in Fig. I. 
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FIG. I 

Similar experiments were performed with II and again the site of hydro- 

gen exchange was ascertained by n. m. r. (5). After II was heated in 0.1 _N 

NaOD in D20 at 74O for two hours there was isolated a product (60%) having 

a spectrum (aqueous solution) consisting of a pair of AB doublets at 2.21 and 

2.361 (J=8. 8 cps; area ratio is 1:l) and very weak signals at lower field. 

These doublets are characteristic of 4-H and 5-H of II and this substance may 

be formulated as 3-chloropyridine N-oxide-2, 6-cl2 ( >95 atom % deuterium). 

A solution of this dideuterated material in 0. 04 N CH30Na in CH30H at 22O - 

was examined periodically over three hours; the signal at lowest field (2-H) 

increased in intensity as dideuterated II was converted into 3-chloropyridine 

N-oxide-6-d. Exchange, therefore, is more rapid at 2-H than at 6-H. In 

another experiment II was heated in 0.04 N KOD in D20 containing a known 

quantity oft-C4H9OD at 74e. Periodic examination of the reaction mixture 

provided spectra having as essential features a pair of doublets at 2. 21 (4-H) 
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and 2.36v (5-H) with a singlet su.perimposed at 2.367’. This singlet con- 

tinued to increase in intensity with time. Comparison of these signals to 

that fort-C4H9OD standard indicated there was no detectable exchange at 

5-H but that deuterium was being introduced at position-4. This series of 

observations establishes the order of decreasing ease of hydrogen exchange 

inIIas2>6>4>5, (7)Fig. II. 
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Approximate relative rates of H-D exchange for pairs of positions with- 

in I and within II were obtained by kinetic studies in CH30D or D20. Sub- 

strate in reaction mixtures was analyzed for hydrogen content by n. m. r. and 

the exchange reaction was found to obey first order kinetics when log (Ro/R) 

vs time was plotted. In this term R. is the initial value for the ratio of the 

area of the signal of the reacting hydrogen to the area of standard; R is this 

value at some intermediate time. Either a non-reacting center of substrate 

itself or addedt-C4HqOH served as an internal reference standard. Half- 

lives were estimated and relative rates were approximated by calculating 

the inverse of the ratio of the half-lives for exchange at the two positions 

studied (8). Examination of reaction mixtures for chloride ion indicated 

little or no dechlorination took place (9). 

The data in Table I indicate the deprotonation rate for I at the 2,6-posi- 

tion is about lo-fold greater than at the 4-postion. In ?I exchange at 2-H is 

approximately lOO-times faster than at 6-H and deprotonation at 6-H is, in 

turn, about loo-times faster than at 4-H. Although there was no detectable 
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exchange at 5-H, a conservative estimate of the rate spread between the 

most reactive and least reactive sites of II is a factor of 105-106. Ex- 

change at equivalent positions, moreover, appears to be faster in I than in 

II. It may be concluded tenatively that an N-O grouping is more effective 

than a Cl-atom in activating equivalent positions of an aromatic ring for 

hydrogen exchange. 

TABLE I. 
Approximate Relative Rates of H-D Exchange 

Estimated 
Pyridine N-Oxide Base /Solvent Half-Life 

Estimated 
Rate Ratio 

3, 5-Dichloroc 0.06 IjCH30Na/CH30Da 2, 6-H, 10 min. 2,6-H/4-H, 10 
I 

4-H, 3 Hrs. 

3-Chloro 
II 

0.06 _NCH30Na/CH30Da 2-H, 30 Min. 2-H/6-H, lo2 

6-H, 6 days 

0.045 _N NaOD/D20b 6-H, 40 min. 6-H/4-H, lo2 

4-H, 2 days 

aAt room temperature. bAt 74 . ‘Satisfactory elemental analyses were 
obtained for this compound. m. p. 110-111.5°. 

Two possible mechanisms to explain exchange are as follows. In Scheme 

I base (lyate ion) attacks hydrogen to give a localized anion which then captures 

deuterium from solvent to form labelled substrate. This sequence is like that 
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proposed for exchange in carbocyclic and five-membered heterocyclic 

systems. In the addition-elimination sequence of Scheme II, solvent adds 

to substrate prior to deprotonation to form a delocalized anion, 

SCHEME II . 
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This second possibility may be characteristic of those substrates which 

readily add nucleophiles. Studies in progress are designed to distinguish 

among these and other possibilities. 
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= 1. 5 Cps) is similar to that in 3-chloropyridine (6) (J 

$6 J5 b-4-5 CPS; J4, 6’1. 7 cps; J2, 4=2. 4 cps; J2 6= 0. 3 &z;=*’ ’ 
2 5= d.8 cps). , 

s 
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